

SHX Sedes

THREE PHASE

IMPORTANT SAFETY NOTES

READ AND UNDERSTAND THIS MANUAL BEFORE APPLYING POWER TO THE SLX MOTOR DRIVE UNIT
The SLX motor drive controller is an open chassis component for use in a suitable enclosure
Drives and process control systems are a very important part of creating better quality and value in the goods for our society, but they must be designed, installed and used with great care to ensure everyone's SAFETY.

Remember that the equipment you will be using incorporates...
High voltage electrical equipment
Powerful rotating machinery with large stored energy
Heavy components
... and your process may involve ...
Hazardous materials
Expensive equipment and facilities
Interactive components
Always use qualified personnel to design, construct and operate your systems and keep SAFETY as your primary concern.

Thorough personnel training is an important aid to SAFETY and productivity.
SAFETY awareness not only reduces the risk of accidents and injuries in your plant, but has a direct impact on improving product quality and costs.

If you have any doubts about the SAFETY of your system or process, consult an expert immediately. Do not proceed without doing so.

HEALTH AND SAFETY AT WORK

Electrical devices can constitute a safety hazard. It is the responsibility of the user to ensure the compliance of the installation with any acts or bylaws in force. Only skilled personnel should install and maintain this equipment after reading and understanding this instruction manual. If in doubt refer to the supplier

ELECTRIC SHOCK RISK

Note. The contents of this manual are believed accurate at the time of printing. The manufacturers, however, reserve the right to change the content and product specification without notice. No liability is accepted for omissions or errors. No liability is accepted for the installation or fitness for purpose or application of the SLX motor drive unit.

1 General description
2 Specification
3 Basic application
4 Mechanical Dimensions
5 Terminal listing
6 Power terminals, presets
SET UP PROCEDURE
7 Visual checklist
б̄ Funıcion swiicties
9 Jumpers, links, S ramp
10 Initial power up
11 Stop start and demand
12 Powering motor
13 Running checks
14 Stability adjustment
15 Alarms
16 Field voltage display
17 Inhibit block diagram
18 Setpoint ramp graphs
19 Torque functions
20 Torque control

GENERAL DESCRIPTION

21 Stall timer
22 Customer presets / Layout
23 Field control
24 Fault finding chart
25 Maintenance, spares
26 Terminals 51-70
27 Worked example
28 Block Diagram
zิy Fuse arrud raiir in iávie
30 Line Reactor dimensions
31 Appendix (section 4)
1/2/3 Basic connections
4
5
6
7
8
9
10
11
12
13

17
Index

Winder application Speed following. Load sharing Master setpoint multi drive Main contactor applications Zero reference interlock Overhauling Simple dancing arm Jog applications Speed setpoint applications MICRO ANALOG PROCESSOR Stopping applications Low voltage applications Local transformer supplies

The units employ closed loop control of both armature current and feedback voltage to give precise control of the motor torque and speed. The motor and drive are protected by a stall timer which automatically removes power after 30 seconds if the required speed cannot be achieved. The drives will provide up to 150% of the preset maximum current for up to 30 seconds allowing high short term torques during acceleration or other changes in load. Independant control of either the current or speed loops by external inputs allows torque or speed control applications with overspeed or overcurrent protection. The demand signal may be derived from a potentiometer, $0-10 \mathrm{~V}$ signal or $4-20 \mathrm{~mA}$ loop. The speed feedback signal may be selected to be the ARMATURE VOLTAGE or a shaft mounted TACHOMETER.
A fully regulated field bridge is provided. This may be switched to provide constant field current for accurate armature voltage feedback, or automatic field weakening for extended speed range. Both these functions are fully adjustable by on board presets, and the field output voltage is displayed.
Control of shaft direction may be by linear voltage signals or convenient pushbuttons. Direct connection to PLC logic controllers is also possible. Braking of the motor may be fast or ramped, and facilities exist which allow choice of action dependant on direction of rotation. Braking energy is returned to the supply. Independant adjustment presets are provided for FORWARD UP RAMP, FORWARD DOWN RAMP, REVERSE UP RAMP, REVERSE DOWN RAMP. The positive and negative current limit is also independantly adjustable. Provision is made to adjust motoring and braking torque independant of rotation direction. There is a comprehensive range of extra inputs and outputs and the unit has electrically isolated control circuits to allow interfacing to external sources. The electonic control cards are manufactured using modern automation and surface mount techniques. This gives superb accuracy and stability and is only made possible by the high production volumes of SPRINT EXER38\% drives.

This diagram shows a simple form of speed control wiring. Please refer to Appendix section 4 for more complex functions.

All incoming main power supply connections must be protected by the correct semiconductor fuses. A substantial earth connection must be made to the earth terminal of the drive. For systems involving frequent or continuous regeneration or high inertia loads, fit a DC rated semiconductor fuse in series with the armature (FUSE marked FA in diagram above). See page 29 for fuse rating tables.

POWER ON/POWER OFF

IMPORTANT WARNING

The POWER ON/OFF facilities integral to the drive must always be used to energise the main contactor.
This ensures correct power sequencing. The armature current may not be commutated to zero and could cause damage if this advice is ignored. (See application sheet in Appendix. Section 4 page 7)

ELEGTRICAL SPECIFICATION

SUPPLY VOLTAGE

3 phase		low tap	high tap	
	+/-5\%	200/240		
separate in phase supply to stack				
ARMATUR	E VOLTS	1.1 times	AC MA	
AC supply	240	380	415	480
AV DC max	265	420	460	530

FIELD output volts 0.9 times AC MAX adjustable output voltage with trend display current regulation for high accuracy AVF speed control automatic weakening mode switch selectable delayed quench for emergency dynamic braking economy mode for motor climate control

TEMPERATURE

$0-50 \mathrm{C}$ operating, -10 to 50 storage

ALTITUDE AND RELATIVE HUMIDITY

3000M max, 85% non-condensing

THYRISTOR BRIDGE

3 Phase fully controlled anti-parallel

ELECTRICAL ISOLATION

high voltage power circuits are
isolated from control circuits

PUSHBUTTON INPUTS

POWER ON
POWER OFF
STOP
START

PRESET CONTROLS
MAX SPEED
MIN SPEED
FORWARD UP RAMP FORWARD DOWN RAMP REVERSE UP RAMP REVERSE DOWN RAMP
SPEED STABILITY
ZERO SPEED
MAXIMUM CURRENT pos I
MAXIMUM CURRENT neg I
FIELD CURRENT
AUTOMATIC FIELD WEAKENING
JOG SPEED

PRESET SWITGHES

contact ratings
1A AT 240V AC

1 field mode	5 relay 1 stall
2 relay 1 timer	6 relay 1 zero
3 speed scale	7 relay 1 reverse
4 speed scale	8 tac/av

```
tac/av
```

FORWARD
REVERSE
JOG
SPEED 2

LINK OPTIONS

50\% Stall level
S shaped ramps 0/4-20mA loop speed mode torque mode zero standstill zero ref, interlock quench mode current mode

PERFORMANCE SPECIFICATION

TYPE	KW	HP	ARMATURE amps	FIELD amps
SLX5	5	6.6	12	2.5
SLX10	10	13.3	24	2.5
SLX15	15	20	36	2.5
SLX20	20	26.6	48	2.5
SLX30	30	40	72	5.0
SLX40	40	53.3	96	5.0
SLX50	50	66.6	120	5.0
SLX65	65	90	155	10.0
SLX85	85	115	205	10.0
SLX115	115	155	270	10.0

TYPICAL MAXIMUM OUTPUT RATINGS FOR 460 VOLT DC MOTOR

SPEED RANGE

100:1 with tacho speed feedback
20:1 with armature volts feedback

STEADY STATE AGCURACY

0.1% with tacho feedback

OVERLOAD CAPACITY

150% full load current for 30 secs.
TORQUE LIMIT CONTROL (arm. current)
0 to 100% of max current setting (link selectable)
2 quadrants only option jumper

DYNAMIC INDICATORS

positive demand
negative demand
stall
timer
field voltage
weakening threshold

LATCHED INDICATORS

field loss
tacho loss
peak current aux input
all latched with individual overide and internal or external reset

SIGNAL OUTPUTS

linear isolated speed current setpoint ramp total setpoint field current rectified arm. volts rectified arm. amps current demand

RAILS AND

 DRIVERS$$
-10-12-24
$$

1)stall	2)timer
3)zero	4)reverse
field loss	
tacho loss	
peak amps	
aux trip	

If more than one switch is ON the functions are "ANDED"

ON	RL1	de-energises if current demand > 105%
ON	RL1	de-energises if stall timer latches out.
ON	RL1	de-energises if speed remains below 1\%
ON	RL1	de-energises for zero or reverse rotation

START pushbutton input $3^{3} \bigcirc \bigcirc^{\text {RL2 }}$
JOG pushbutton input $\underset{\text { speed demand }}{18}$ mon. Also accepts 4-20mA LOOP signals

0 V . This input is ramped.
gled by FWD 15 REV 16
t speed or torque
4Q/2Q/SPEED.
open. Connect to
12 V via 4 K 7.
d as tacho common.
speed scaling by switches S3/4

INVERTED) -/+10V. 1KOhm.
ected by RL2. see T13/14. Also JOG SPEED reference +/-1V 470K impedance
'-10V FOR +/-100\% SPEED
ED INPUT +/-10V , -/+100\%
5 V for 0 to $+/-100 \%$.
「. +/-10V. 1KOhm.
scale. 1K Ohm.
to 5 V for 0 to 5 Amps up to SLX 50.0 to 5 V for 0 to $10 \mathrm{Amps} \operatorname{SLX65/85/115.~}$

LL when taken to 0 V . 47 K pull up to +24 V .

25mA DC relay driver

POWER ON/OFF this configuration causes contactor drop out if any alarm is triggered. 24 V DC operating voltage on $28,29,30$

See Application notes in appendix.

RELAY to drive main supply
A max. (suppression of the external contactor coil is recommended)
le controller prior to checking with a
n (if fitted).
azard and that nobody else working on

Ig axis with no slippage on the shafts.
i must be the same as L1 L2 L3. Check ; and line reactor). Repeat check for

Jresets may be found on Page 22. mint in torque mode. For complete

FUNCTION SWITCH checking. Switches S1 to S8.

SWITCH 1

FIELD CONTROL switch. When OFF this sets the field control circuit to standard current regulation. For systems requiring field weakening, it is necessary to operate initially in the standard mode. (OFF). Refer to page 23 for field set up description.

SWITCH 2

When ON, de-energises relay 1 (T10/11/12) when stall timer commences. (See S5/6/7)

SWITCH 3 and 4

SPEED FEEDBACK SCALING.

TACHO.	3,4	off	30 V	-	60 V
or	3	on	60 V	-	125 V
ARM	4	on	125 V	-	250 V
VOLTS	3,4	on	250 V	-	500 V

The MAX SPEED preset gives fine adjustment within the switch range.
FOR SYSTEMS UTILISING TACHO FEEDBACK, THE SAFEST PROCEDURE IS TO COMMISSION THE DRIVE FOR THE FIRST TIME IN ARMATURE VOLTAGE FEEDBACK MODE, WITH THE TACHOMETER CONNECTION REMOVED FROM TERMINAL 9. THIS WILL PREVENT A RUN-AWAY MOTOR IN THE EVENT OF INCORRECT TACHO POLARITY OR COUPLING. IT ALSO ALLOWS THE FULL SCALE TACHO VOLTAGE TO BE MEASURED PRIOR TO USE.

THE SUGGESTED STARTING POINT IS: S3 ON, S4 ON, MAX SPEED FULLY ANTI-CLOCKWISE. GIVES 250V MAXIMUM ARMATURE VOLTAGE.

SWITCH 5, 6 and 7

RELAY 1. (volt free changeover relay on T10/11/12). Switches 5,6 and 7 (and S2) control the function of Relay 1. If more than one function is selected then these functions are logically ANDED.

5,6 off	Relay 1 permanently de-energised
5 on	Relay 1 de-energises on stall condition
6 on	Relay 1 de-energises at zero speed
5,6 on	Relay 1 de-energises on stall condition and speed = zero
7 off	Relay 1 permanently de-energised
7 on	Relay 1 energised at zero speed and during reverse rotation.

SWITCH 8

Switch 8 selects the method of feedback. When first commissioning start in armature voltage feedback (AVF). Ensure tacho is disconnected from terminal 9 when using armature voltage feedback.

8 off	OFF for Tacho feedback
8 on	ON for Armature voltage feedback

JUMPERS AND LINKS

MAX CURRENT MODE JUMPER

The Max current mode jumper determines the mode of operation of the Max current presets. A full description is given on page 19 and 20 , refer to this and select the mode required according to the application.

TORQUE/SPEED JUMPER

The torque control operates by clamping the current demand from the speed loop. See block diagram. Hence the loop with the lower demand has control. This allows torque control with overspeed limiting, or speed control with over torque limiting. A full description of this function is given on page 19 and 20 . It is recommended to set the drive up initially in SPEED mode and then when the speed operation is satisfactory, to commence the TORQUE commissioning.Temporarily park the jumper on one pin to disable.
50% STALL THRESHOLD. A full description of this function is given on page 21 . Link the solder pads if the funetion is rencuined

QUENCH JUMPERS

These jumpers govern the behaviour of the drive inhibit logic. (FS fast quench of both speed and current loops, 1S 1 second delay to current loop quench, ZS speed and current loops quenched if setpoint and speed remain at zero for 1 second). Rapid stopping, ramped stopping and coasting to stop are enabled according to requirements. Please refer to the BLOCK DIAGRAM OF DRIVE INHIBIT CIRCUIT on page 17, and description of RAMP FUNCTIONS on page 18 in order to choose the correct mode for your application.

S RAMP

The S RAMP function is an option that allows the shape of the speed demand ramp to be modified.
To implement the S RAMP function

1) link the solder pads marked IP+
2) break the solder pads marked $S \quad R \quad$ (de-solder)
3) add 2 10uF electrolytic capacitors. SC
4) add a 240 K resistor Note this function utilises the auxiliary input which appears on terminal 70. (the length of the S shaped tails is roughly proportional to the capacitor size. Other values may be used if desired. The 10uF caps give tails of 1 second approximately)
The S ramp output can be seen inverted on terminals 17 and 57.

4-20mA SIGNAL INPUT LINK.

Link the 2 pairs of solder pads to allow terminal 2 to become the loop input, terminal 5 the return and adjust MIN SPEED to change the gain. For 0-20mA signals link only the lower pair of solder pads.

ALARM DEFEAT

The drive has 4 fast latched alarms:
Field loss
Tacho loss
Peak amps
Aux. trip
If any one of these is triggered, then the drive is immediately inhibited and the main contactor is de-energised. Any alarm may be defeated by linking the appropriate jumper. A full description is given on page 15 and 16 .

THERMISTOR or MICROTHERM.

Terminal 25 is an external trip input. If the resistance to $0 V$ exceeds 2.0 KOhms, then the AUX. TRIP ALARM will trip the main CONTACTOR. This may be used for interpole motor protection devices. If not used, the feature must be inhibited by connecting T 25 to COM. The alarm will not trip for resistances to OV less than 200 Ohms.

SAFETY CONSIDERATIONS

Before proceeding to the next stages which involve applying power to the drive, check the following items:
All relavent safety precautions have been observed.
There must be no unqualified or unauthorised personnel allowed near the drive or machine or load.
Do not work on the drive without safety assistance.

PART 2 INITIAL POWER UP

The unit is now ready to receive auxiliary power. At this stage it is necessary to use a voltmeter to measure certain signals.

DISABLE CONTAGTOR

Before applying power, check that the main CONTACTOR is still disabled. If there is any doubt about the integrity of a particular system, insert a high wattage resistor in series with the armature e.g. a fire element. The following checks will involve measuring certain signals with power applied to the drive.

APPLYING POWER

Verify that the supply jumpers match your supply. Also check drive rating label. The six supply jumpers can be seen at the lower right hand side of the power board. See page 25 for details for removing the top card. Note, new units are shipped from the factory with the jumpers in the STANDARD position (380-480V).

THE FIRST TIME YOU APPLY POWER BE READY TO TURN OFF QUICKLY IN THE EVENT OF A PROBLEM.

1) Apply Power
2) Observe illuminated bridge lamp
3) All alarm lamps should be off
4) Check the following voltages

All 3 auxiliary phases should match model and tap selection.

EL1-EL2
EL2-EL3
Correct phase to phase AC VOLTS
EL3-EL1 should be present $200-240 \mathrm{~V}$ or $380-480 \mathrm{~V}$.

10 VOLT REFFERENGES

The remaining measurements are taken with respect to OV (com)
T4 -10V Reverse selected.

DANGER
ELECTRIC SHOCK RISK

T4 +10V Forward selected.
T1 +10V
T3 +10 V to -10 V adjustable by speed demand pot. Leave at 0 volts.

POWER ON / OFF CIRCUIT

The next stage is to check the POWER ON/POWER OFF circuit.
WARNING. ENSURE THE MAIN CONTACTOR IS STILL DISABLED.
When the POWER ON function is activated, the field voltage will increase to provide the preset field current. When POWER OFF is selected the field voltage will stay on for a further 15 seconds and then go off. If the economy field mode is selected the field current will reduce to 40% of the preset level.

Operate the POWER ON/POWER OFF buttons and check that the slave (T31-T32) opens and shuts .
The Slave Contact lamp comes on when the contact closes. The SLAVE CONTACT lamp is in the top right hand corner. Note, if any alarm lamp is on, the POWER ON function is inhibited.

Check that any other contacts in the POWER OFF line operate correctly.
With POWER ON active, adjust the field see page 23

The next stage will establish that a current demand signal is present. To do this the run contact must be temporarily shorted (T5-T7) and also START (T5-T13). Note, the STALL lamp may come on during this sequence of tests, this is normal. To prevent this from causing interruptions, temporarily put the TORQUE jumper in the 4Q position, activate POWER ON.

Increase the the speed demand and observe the RAMP (T22). This should follow the setpoint at the slowest rate. The speed demand may be derived from numerous sources depending on application, and the analogue processing inputs (T18, T19, T20) may be utilised. Refer to the BLOCK DIAGRAM and follow the signal path. NOTE. the resultant RAMP output may be the bi-polar summation of more than one input. More accurate adjustment of the up and down ramps is possible now.

Check that an inverted version of the RAMP output appears on the TOTAL SETPOINT OUTPUT (T17). If the S RAMP function has been implemented, the inverted output can be monitored on T17.

After being satisfied that the the speed demand is functioning, it is possible to check the next stage. This compares the speed demand with the speed feedback and integrates the error to produce a voltage signal. (Current demand IDO on T 54, 0 to -7.5V represents 0 to 150%., This is the Torque demand.) The signal can be made to integrate up by arranging for a small speed demand.

Re-park TORQUE jumper on one pin to release current demand.

TIMER LAMP

The TIMER lamp should come on as the current demand exceeds -5.25 V (105\%).

STALL LAMP

The stall lamp should come on approximately 30 seconds later causing the slave contact to drop out and the TIMER lamp to latch on.

The stall alarm may be reset by removing and re-applying auxiliary power, or by momentarily shorting $\mathbf{T 6 1}$ to $\mathbf{T 6 2 .}$

TORQUE CONTROL

For systems involving TORQUE control it should be possible at this stage to establish correct operation of a 0 to +10 V input to T 6 . With the torque link in 2Q TORQUE position and a speed demand input (+) the current demand signal should be controlled between 0 to -5 V .

Operating the POWER OFF button or opening the RUN line will reset the ramp and current demand circuits.
With the Torque link in the 4 Q position and a speed demand of + or - , the current demand signal should be controlled between 0 to -5 V for a 0 to +5 V input on T 6 . The current demand lamps should change according to the sign of the speed demand during this test. The timer lamp should come on for an input of 5.25 V on T 6 . (It is possible to allow a negative 4 Q input signal, see pages 20, 22).

PART 3 APPLICATION OF POWER TO THE MOTOR

Turn off all power and refit the MAIN CONTACTOR COIL SUPPLY FUSE.

SLAVE RELAY

The switching capability of the slave relay is 1 A at 240 V AC. For contactor coils with higher ratings, an intermediate slave relay should be utilised. A coil suppressor should be fitted to the main CONTACTOR.

Ensure all speed demands are set to minimum. Turn on the supply to the drive. Press the POWER ON button. The main CONTACTOR should pull in.

Press the POWER OFF button. The main CONTACTOR should drop out.

SAFETY WARNING

WARNING. The main contactor should never be operated by any means other than the internal contactor control circuit provided. Any warranty will be invalidated if this warning is not heeded.

DO NOT PROCEED FURTHER UNLESS THE POWER ON/OFF CIRCUITS AND CONTACTOR OPERATE CORRECTLY.

POWER ON

POWER ON and close the RUN contact.

LOW SPEED CHECK

Press START and then set the speed demand to about $+5 \%$. Then slowly rotate the MAX CURRENT (POSI) clockwise to about 20%. The motor should rotate at 5% of full speed (initialiy full speed is 250 V on armature). If the direction of rotation is incorrect, POWER OFF and remove the supply to the drive. Swap the field connections. Continue as before and progressively increase the speed DEMAND to 50%. During this stage an increase in MAX CURRENT may be required if the TIMER lamp remains on.

MAX SPE=[D

Increase the speed demand to 100% and adjust MAX SPEED to give the desired full speed. DO NOT ALLOW ARMATURE VOLTAGE TO EXCEED RATING. Monitor the armature voltage output on T56. 0 to 10 V for 0 to $+/-500 \mathrm{~V}$ AV. The rating will be found on the motor rating plate. If the motor rating is excessive for the supply used, then do not exceed the ratings on page 2.
FOR SYSTEMS WITH TACHO FEEDBACK. With the motor at the correct max speed for the application (this need not be the maximum capable speed) check the tacho voltage and polarity. STOP THE DRIVE and POWER OFF. Re-connect the tacho with the -ve wire to T9. Select S3, S4 range to suit tacho voltage. Turn off S8. See worked example page 27. For a low voltage tacho, the full scale voltage ranges can be reduced by 50% by a link on the control card. There is also an optional tacho differential term mode.(see layout page 23).

ZERO SPEAD

Temporarily remove the ZS jumper for accurate ZERO SPEED calibration. Re-adjust MAX SPEED for correct tacho voltage. Reduce the speed demand to zero and adjust the ZERO SPEED preset until the motor just turns, then back off until it just stops.

MIN SPEED and JOG SPEED

Reduce the speed demand to zero and rotate MIN SPEED to give the desired minimum motor speed. If the JOG SPEED function is required, operate the JOG mode (see section 4 page 11 for typical jogging systems) and adjust the JOG SPEED preset clockwise to the desired level. (+/-5\% max)

MAX CURRENT

Refer to page 19 to determine the appropriate preset. Adjust the MAX CURRENT preset to the desired level. (Clockwise rotation gives a linear increase in current limit) Full rotation corresponds to the maximum nominal rating of the drive. (note, the TIMER lamp comes on if the current demand exceeds 105%. While adjusting the MAX CURRENT preset, the lamp may be used to approximate the load current. Note the preset rotation percentage as the lamp changes state)

UP AND DOWN RAMPS

Final adjustment of the up and down ramps can now take place.

Tthe stability of the SPEED and CURRENT loops can be adjusted. The initial setting of midway is usually optimum for the speed STAB preset. Clockwise rotation of the STAB preset increases the response of the drive. Excessive rotation may cause instability. Adjustment of the current loop (TORQUE) stability should not be attempted without the aid of an oscilloscope. (Adjustment is not normally needed, anti-clockwise optimum)

CURRENT RESPONSE

Arrange for a small square wave perturbation (20\%) to be imposed on the speed demand. This may be derived from a waveform generator and input via T6 in SPEED mode.

Overshoot may be reduced by anticlockwise rotation of the speed or current stability presets. Best strategy for adjustment is to set up speed response first with current stability anticlockwise (factory setting).

SPEED RESPONSE

a) Overshoot

b) Ideal response
c) Undershoot

CURRENT REDUCTION

When customer systems are being tested prior to shipping it is sometimes only possible to use a small unloaded motor. This may lead to speed instability. A current reduction jumper has been provided to reduce the current scaling by 50%. This will improve speed stability whilst testing is in progress. See layout on page 22.

Clockwise rotation of STAB to increase speed of response. Do not allow excessive overshoot to occur. Note if there is excessive overshoot in tacho feedback mode check tacho couplings are stiff and not slipping. Extra response can be gained by adding a 0.1uF capacitor in the DIFF position. (see block diagram page 28 and layout page 23). This provides feed forward of the tacho signal and allows the STAB preset further rotation. Re-check the current response after adding the differential term to make sure there is no excessive overshoot. If the tacho signal is noisy then adding the differential term may lead to erratic current stability. Ensure the tacho signal is clean by observing it on an oscilloscope before implementing the differential term.
Repeat the tests for negative speed inputs, Reverse ramps, NEG I. etc. Start at the Power On section Page 13.

POWER OFF

The drive should now be set up and ready to operate. Press the POWER OFF button. The main CONTACTOR should drop out and the motor will coast to rest.

END OF PROGEDURE

These set up procedures are intended as a general guide and can not be expected to cover all possible configurations.

The drive provides protection for the system in the event of certain dangerous conditions. If an alarm is triggered the drive is instantly quenched followed by automatic de-energisation of the main CONTACTOR. The alarm condition remains latched and is indicated by a lamp on the drive. There is provision to defeat any individual alarm, and an external RESET terminal is provided. It is also possible to gain access to the individual lamp outputs for external indication if required. (page 23)

IAMPS

FIELD LOSS

TACHO LOSS

PEAK AMPS

AUX. TRIP (heatsink temp)

AIAPM EIMCTION

If the field current drops below 100mA on models up to SLX50 and 200mA on models SLX65/85/115, then this alarm will be triggered. This alarm is inhibited during a POWER off sequence

If there is a loss of tacho feedback causing the motor to overspeed this alarm will trigger. An internal circuit continually monitors the current demand and the armature voltage and operates when both parameters indicate loss of feedback. This function is automatically inhibited in ARMATURE VOLTAGE feedback mode.

If the current reaches 400% of the maximum drive rating this alarm will trigger. If this occurs on initial power up, suspect a wiring fault. If it occurs during running suspect a motor fault. If it occurs repeatedly a damaged thyristor may be the cause. This alarm can only be reset by removing the supply.

This alarm is provided for external use and is connected via terminal 25. The terminal possesses a 1 K Ohm pull up resistor to +12 V . The alarm will trigger when the resistance to OV (com). exceeds 2 K Ohm. It will not trigger if the resistance to OV remains below 200 Ohms. It is also triggered by excessive heatsink temperature.

DEFEATING THE ALARMS

If an alarm is not required to operate it may be defeated.

DEFEAT		
JUMPER	pins	A double row of pins located on the control card provides the function. Locate the jumper across the appropriate pair of horizontal pins. The COM pins are at OV and
\bigcirc		
\bigcirc	TACHO	be wire wrapped. Any number of alarms may be defeated. (NOTE: if the AUX. TRIP is defeated then the heatsink temperature alarm is also defeated)
$\bigcirc 0$	PEAK AMPS	RESETTING ALARMS.
$\bigcirc 0$	AUX. TRIP	A triggered alarm may be reset via terminal 26 and is achieved by momentarily shorting to 0 V (com). T26 has a 47 K Ohm pull up to +24 V . (Remove supply for
Δ		PEAK AMPS)
COM		
WARN	G! DO NO	FEAT ANY ALARM WITHOUT DUE CONSIDERATION TO SAFETY.

The STALL alarm has the same effect as the other alarms, but due to the important nature of this alarm it is not able to be defeated or reset in the same way.

It is triggered by a timer according to the current demand. (150\% for 30secs, 125\% for 60 secs, 110% for 120 secs). The timer starts timing when the current demand exceeds 105%. This is indicated by the TIMER LAMP.
A number of conditions can lead to excess demand and hence STALL. Incorrect current calibration, incorrect speed calibration, underated motor, jammed or excessive load, incorrect feedback scaling, slipping tacho coupling, supply too low for required output, incorrect motor wiring, excessive speed demand input, in fact any reason that prevents the speed loop from achieving what it is being asked to do.

The only way to inhibit the STALL alarm is to prevent the current demand exceeding 100%. To do this the drive must be in TORQUE mode with the external current demand input via terminal 6 below 100\%. The STALL alarm may be reset by momentarily shorting T62 (SS) to T61 (+12V)

These lamps indicate the polarity of the current demand. One lamp will remain on while the auxiliary supply is energised by two or more lines. WARNING: do not assume that the supply is disconnected if the lamp is off.

FIELD VOLTAGE DISPLAY

100% represents 0.9 times AC supply.

RAMPS

STOPPING MODES

The above traces show the effect of opening the RUN terminal 7. The setpoint ramp is immediately reset, and the load regeneratively braked. In cases 1 and 2 , the firing pulses are removed after 1 sec. In case $3,1 \mathrm{sec}$. after reaching zero speed.

To ramp down under control of the DOWN RAMP preset, operate the STOP function on T13. This removes the speed setpoint

TORQUE FUNGTONS
SIGNAL INPUT TERMINAL 6.
THE EXTERNAL SIGNAL IS SCALED

THE EXTERNAL SIGNAL IS SCALED

THE 2Q TORQUE
JUMPER ALLOWS THE CURRENT LIMIT TO BE PROGRAMMED BY AN EXTERNAL SIGNAL FOR THE POSITIVE CURRENT ONLY. THE NEGATIVE LIMIT IS PRESET ADJUSTED

THE 4Q TORQUE JUMPER ALLOWS THE CURRENT LIMIT TO BE PROGRAMMED BY AN EXTERNAL SIGNAL FOR BOTH POSITIVE AND NEGATIVE CURRENT.

NOTES. The torque input signal is used to clamp the upper limit of the internal current demand signal before it is fed to the MAX. CURRENT presets The relevant preset is set by the MODE jumper

If the speed loop does not require current greater than the clamp level, then it will have control.

Facilities are provided for controlling the torque (current) instead of the speed (volts) of the motor. This is achieved by allowing the current demand to be clamped by an external input. NOTE the current demand is provided by the speed loop and hence the speed loop must always be asking for more current than the clamp level. This technique gives automatic overspeed limiting.

TORQUE / SPEEB JUMPER

This is a 3 position jumper which controls the function of terminal 6 (AUX). A schematic is shown below

WAX CURRENT MODE

The electronic switches C and D select which MAX CURRENT limit preset is enabled according to the position of the current MODE jumper. see page 19. The sign of the setpoint ramp output determines the preset selection.

1 P6 POS I, quadrants 1 and 2

P10 NEG I, quadrants 3 and 4
This is the classical mode of operation. The disadvantage of this arrangement is that the the current limit for braking in the forward direction, becomes the same limit for motoring in the reverse direction.
2 P6 MOTOR, quadrants 1 and 3

P10 BRAKE quadrants 2 and 4

This mode allows one preset to control the motoring current limit in both directions of rotation, and the other preset to control the braking current limit in both directions of rotation.

3 P6 FWD, quadrants 1 and 4
This mode allows one preset to control the current limit for both motoring and braking in one direction of rotation, and the other preset controls current in the other direction.

To achieve the desired speed, the outer speed loop provides the current loop with a CURRENT DEMAND signal. The timer itself is inhibited while the current demand signal lies below -5.25 V (-5 V represents 100%). Whenever the signal traverses into the area between -5.25 V and -7.5 V the stall timer starts to integrate. The rate of integration is proportional to the magnitude of the signal over 105%.

SCHEMATIC OF STALL TIMER

The time taken to integrate a 150% level is approximately 30 seconds , 125% for 60 seconds etc. Thus the stall timer allows smaller overloads for longer periods. When the current demand falls below 105% after being in overload, providing the timer has not timed out, the integrator starts to integrate back down again. This feature provides an historical store of the behaviour of the current demand. If the timer has come close to tripping, and then the demand falls below 105%, the demand will need to spend at least 30 seconds at 50% to totally reset the timer. The effect of this feature is to have the ability to provide complex overload behaviour, and trip only when the time average overload is exceeded.

50\% STALL THRESHOLD

FUNCTION: TO ALLOW HIGH PEAK CURRENTS
This changes the level at which the stall timer integration starts to 52.5%. The advantage of this feature is it allows the 150%, current to be achieved, but provides protection above 50%. The stall time is reduced by half. When using this feature it is important to remember that the maximum current rating of any model is unchanged, and the trip level is reduced.

RESISTOR	THRESHOLD	OVERLOAD	RATIO	PEAK \%
LINK	50%	150%	$1: 3$	300%
$100 K$	60%	150%	$1: 2.5$	250%
$220 K$	70%	150%	$1: 2.1$	210%
$470 K$	80%	150%	$1: 1.87$	187%
1 M	90%	150%	$1: 1.66$	166%
OPEN	100%	150%	$1: 1.5$	150%

Other threshold levels can be implemented if a resistor is used instead of a link.

Rotate clockwise to increase speed. Change range with S3 and S4.

Rotate clockwise to increase minimum speed. Use to adjust $4-20 \mathrm{~mA}$ loop burden resistor between 0 and 360 Ohms if $4-20 \mathrm{~mA}$ mode is selected.
Rotate clockwise to increase drive acceleration in forward direction. (+) span is approx. 1 to 30 seconds.
Rotate clockwise to increase drive deceleration in forward direction (+) span is approx. 1 to 30 seconds.
Rotate clockwise to increase drive acceleration in reverse direction (-) span is approx. 1 to 30 seconds.
Rotate clockwise to increase drive deceleration in reverse direction (-) span is approx. 1 to 30 seconds.
Rotate clockwise to increase response. Excessive rotation may cause instability.

Rotate clockwise to increase level of positive zero speed adjustment, and anti-clockwise for negative adjustment. (+/-5\% span)

Rotate clockwise to increase current limit. Eg 50\% rotation gives 50% current limit.

The position of the MODE jumper determines the PRESET function according to the table
POSITIVE CURRENT NEGATIVE CURRENT MOTORING fwd/rev BRAKING fwd/rev FORWARD + and - REVERSE + and -

TORQUE OR SPEED MODE JUMPER: This jumper alters the function of the AUX input on terminal 6.

4Q TORQUE: 0 to +5 V for 0 to 100% positive and negative current limit.
2Q TORQUE: 0 to +10 V for 0 to 100% positive current limit
SPEED: 0 to $+/-10 \mathrm{~V}$ for 0 to $+/-100 \%$
$4-20 \mathrm{~mA}$. Link both pairs of pads and terminal 2 is input, 5 return. MIN SPEED to set zero. Link the lower pair of pads only for $0-20 \mathrm{~mA}$ loop signals.

S1 sets the motor field control mode. When off, the field current is set by the CURRENT REGULATION preset. When on, the automatic field weakening mode is selected, and the AV limit preset becomes active.

S2 allows the relay on 10, 11, 12 to be energised by the STALL TIMER. When on, the relay remains energised for current demand levels below 105\% of preset limit.

Use the MAX SP位
 $30-60 \mathrm{~V}=60-125 \mathrm{~V} \longrightarrow 250$ to 500 V

$$
\text { S2, S5, S6 and S7 allow the function of the relay on } 10,11,12 \text { to be selected. }
$$ S5 when on, the relay remains energised until a stall condition occurs. S6 when on, the relay remains energised for speeds above 1% of full scale. NB. with both switches on the relay de-energises when a stall condition has occured AND the speed has fallen below 1% of full scale.

S7 when on,the relay remains energised for speeds above 5\% in the forward direction and de-energises at zero or reverse speed.
S8 This switch allows the selection of the source of speed feedback. When on, the ARMATURE VOLTAGE is selected. When off, a tacho. Calculate the maximum feedback voltage from the chosen source in order to set switches S3, S4. (e.g Tacho 180 V at full speed S3 off, S4 on, S8 off. Armature voltage 460V, armature voltage feedback selected, S3 on, S4 on, S8 on).
The drive remains quenched if the setpoint ramp AND the speed feedback remain below 1\%. The quench will not be released once the motor has stopped unless the setpoint ramp exceeds 1%. Hence for systems utilising the direct speed input on terminal 6, the drive will remain quenched once the speed has returned to zero. To overcome this, either remove the ZS jumper, or arrange for a small ramp setpoint.

$$
\text { Break link to allow negative } 4 \mathrm{Q} \text { torque input }
$$ Stall lamp lights and drive quenches if the stall timer trips. The time depends on the current demand STANDARD WITH 50\% THRESHOLD $150 \% 30$ secs $\quad 150 \% \quad 15$ seconds $125 \% 60$ secs $\quad 100 \% \quad 30$ seconds

Link to implement 50% STALL THRESHOLD

CURRENT REDUCTION

0

NOTE: this preset is not normally adjusted.
CURRENT Rotate clockwise to increase the STABILITY response of the current loop. Excessive rotation may lead to unwanted current instability. The standard setting is fully anticlockwise. Refer to page 14.

CURRENT REGULATION（linear output on terminal 24 field current $0-5 \mathrm{~V}$ for $0-100 \%$ ） Rotate clockwise to increase field current．NOTE：When the MAX lamp on the field voltage display changes state the field voltage is at 95% ．Any further clockwise rotation will be unable to increase the field current，and the constant current regulation facility will be over－ridden．If the field output is to be set up by refering to field voltage，then the current regulation preset may be used to move the initial voltage to the required level．The control loop will then regulate at the current that was initially established by the applied field voltage．This will provide an enhanced level of speed control when ARMATURE VOLTAGE FEEDBACK is being used，by eliminating field flux variations due to changes in the field current．

AUTOMATIC WEAKENING SI ON

This function monitors the armature voltage and after the preset level has been reached，any further speed demand reduces the motor field current．Thus the motor speed may be increased without exceeding the rated armature voltage． This function must only be used with TACHO feedback．To set up the system，first adjust the field current to the correct maximum using the current regulation preset．Then with the automatic preset fully clockwise and the drive set to provide maximum armature voltage at the reduced setpoint，rotate the AUTOMATIC WEAKENING preset anticlockwise until the field starts to reduce as shown by the display．Any further increase in speed demand should now result in a further reduction in the field volts．Typically the speed demand is 75% for full armature volts．（linear signal output on terminal $56,0-10 \mathrm{~V}$ for 0 to $+/-500 \mathrm{~V}$ armature）

DELAYED FIELD QUENCH

The unit provides automatic control of the field output．When the main power contactor is de－energised by the POWER OFF function，the field current is quenched．The quench action is delayed by 15 seconds to allow dynamic braking systems to operate．
ECONOMY FIELD MODE（the field current must be set up first for accurate operation） The field is quenched 15 sec ．after the main power contactor is de－energised．The economy field mode allows the quench level to be set to 40% rather than 0% ．This feature is used in cold climates to keep the motor warm when it is not rotating．To implement the economy field mode，remove the resistor marked＇ECONOMY FIELD＇

This connector allows special applications and diagnostics．

2）\quad тз speed I／P	4）T18 speed IP	6） T 6 aux I／P	8）$T 7$ run I／P	10） power on	12） field I／P	14） T 24 field O / P	16） 75 common	$\begin{aligned} & 18) \\ & +12 \end{aligned}$	－12
1） T 22 ramp O／P	3） T 17 total $0 / P$	5）T23 speed O／P	7）$T 54$ I demand	9） T 21 IOP	$\begin{aligned} & \text { 11) } \\ & \text { RL1 } \end{aligned}$	13） field loss	15） tacho loss	17） peak A	$\begin{array}{r} 19 \\ \text { aux. } \end{array}$
						these four signals can drive an external LED to show alarm status			
		135791113151719 drive interface connector				$\begin{array}{\|l\|l\|l\|} \hline \underset{21}{ } & \underset{22}{ } & \underset{23}{ } \\ \hline \end{array}$	${ }_{24}{\underset{24}{ }}_{25} \underset{26}{ } \ominus_{26}$	$\begin{array}{\|l\|l\|l\|} \hline \Theta_{28} & \underset{29}{ } & \underset{30}{ } \\ \hline \end{array}$	
	皆				$\frac{0}{x}$	응		落	$\frac{I}{5}$

FIELD VOLTAGE DISPLAY（page 16） This ir dicates the approximate level of the motor field voltage．The MIN lamp ：tarts to come on at 25% and gets krighter as the level increases． The middle lamp comes on at 50% and g sts brighter as the level increases．The MAX lamp comes on at 95% ；at full brightness．
NOTE the maximum available FIELD VOLTAGE is 0.9 times the AC supply．
The MAX lamp is a useful indication of the field bridge just coming out of full ohase angle，and into the contrc lled region．The other two lamps give a dynamic indication of the changing field voltage．

anticlıckwise

midway

clockwise
Not ss on automatic field weakening： 1）It the acceleration rate of the drive is too fast，then the field may ove weaken and trip the FIELD LOSiS alarm．To prevent this，rotate the UP RAMP anticlockwise． speied

External LED lamps to show alarm．status．

If the problem is not covered by this chart, repeat the set up procedure and try to determine at which step the problem is highlighted.

Symptom
1 main contactor will
not energise
2 no alarms but still
no main contactor
3 slave contact lamp
comes on but no
main contactor

possible reason	page
1 alarm tripped	15
2 power on/off not	
properly configured	28
3 wiring or contactor	3
coil supply problem	

possible remedy	page
1 find alarm cause, use defeat if able 2 check system and wiring of T28/29/30 3 coil supply fuse or wrong supply volts	15 28
possible remedy	page
1 check current cal. of drive and motor	$\begin{aligned} & 19 / 20 \\ & 21 / 28 \end{aligned}$
2 check field current calibration	23
3 check feedback source full scale	$\begin{aligned} & 22 / 27 \\ & 28 \end{aligned}$

| Symptom |
| :---: | :---: |
| 1 speed changes when
 ancilliaries energised
 2 incorrect speed and
 stall timer lamp off
 3 incorrect speed and
 speed feedback cal.
 is correct |

possible remedy	
1	page
1 suppress noise or	
screen/filter tach	
2 check feedback	$22 / 27$
source full scale	28
3 trace all speed I/P	$27 / 28$
sources to total	
setpoint O/P. T17	

Symptom
1 deceleration too slow
and timer lamp flashes
2 deceleration too slow
timer lamp stays off
3 deceleration too fast
and/or uncontrolled
behaviour

| possible reason | |
| :--- | :--- | page \quad| 1 | braking current too |
| :--- | :--- |
| low for load inertia | $18 / 20$ |
| 2 | down ramp preset needs |
| adjustment | $18 / 22$ |
| 3 the stopping mode is | $17 / 18$ |
| incorrect for the | |
| chosen application | 28 |

possible remedy	page
1re-check current $18 / 20$ calibration 2 adjust down ramp $18 / 22$ preset clockwise 3 rapid stopping with run $17 / 18$ line OR ramped using stop/start 28	

Symptom		possible reaso	page
1 intermittent stall trip after some months		1 original current setting marginal	16/23
2 field loss alarm in field weakening mode		2 armature voltage changing rapidly	
3 aux. trip triggered, thermistor on T25		3 overheated motor OR heatsink temp.	

possible remedy page	
1 re-check current calibration	
2 limit acceleration, 10 secs. for 100%	16/23
3 increased cooling for motor or drive. (heatsink lamp L1)	$29 / 15$ 25

For further information on the cause of problems, refer to the block diagram on page 28. This is surrounded by boxes from 1 to 24 , which contain keynote comments relating to each section of the drive unit. OBSERVE SAFETY

Apart from relays, the unit is completely static and requires little routine maintenance. Periodic cleaning should be done with a vacuum cleaner and small soft paint brush. Check all connections for tightness and discoloration which might indicate localised heat.

It is recommended that units requiring service be returned to the supplier. However in the event that the unit must be dis-assembled, only qualified personnel familiar with power engineering should be employed.

To dis-assemble models up to SLX50, follow the sequence outlined below. Models SLX65/85/115 have more complex high current stack assemblies and it is recommended that units requiring service be returned to the supplier for inspection and servicing.
Plan view of unit with cover removed. To remove the cover, unclip top catches and apply slight outward force to side panels at hinge
(unplug fan connector

1) To remove top control card, remove plastic screws $7 / 8$, and release the retaining catches $5 / 6$. Carefully lift off the top card vertically from the bottom card. Avoid stressing the 20 way interconnection plug 9.

STEPS 2 AND 3 REFER TO MODELS UP TO SLX50 ONLY

2) To remove the power card, remove plastic screws $1 / 2 / 3 / 4$ and threaded pillars $7 / 8$. Disconnect 12 faston plugs from thyristors. These may be fairly tight, avoid damaging the red and yellow wires. Remove 4 long busbars by removing thyristor screws.Remove remaining exposed thyristor screws.
3) Lift off power card, and recover 6 supporting pillars. Unscrew temp sensor for total removal. Assemble in reverse order taking care to observe correct torque ($3.1 \mathrm{Nm}, 0.31 \mathrm{kpm}, 2.3 \mathrm{lbft}+/-20 \%$) when tightening thyristors. Make sure interconnection plugs are properly mated.

L1 lamp, off if the heatsink is too hot

All models have terminals on the top edge of the control card, marked 51 to 70 . NOTE the terminal numbering system is common to the whole range. The prefix T refers to a terminal.

T51-24 volt rail. unregulated, unprotected, may vary between -35 V and -18 V depending on loading and supply. This rail is primarily provided to supply external signal relays used in conjunction with $\mathrm{T} 52, \mathrm{~T} 53, \mathrm{~T} 59, \mathrm{~T} 60$. Output capability 25 mA . Do not overload or short.

T525T Stall relay driver. PNP open collector output. -40 V max voltage when off. 100 mA max current when on. Note a flyback diode for the relay coil is included internally.

75325 Zero speed relay driver. PNP open collector output. -40 V max voltage when off, 100 mA max current when on. Note a flyback diode for the relay coil is included internally.

T54 IDO Rectified current demand output. 0 to -5 V represents 0 to $+/-100 \%$ current demand. 1 K series buffer resistor. Maximum output -7.5 V for 150% demand.

T55 RO Ramp output. 0 to $+/-10 \mathrm{~V}$ represents 0 to $+/-100 \%$. 1K series buffer resistor. Short circuit protected.
T56 AV Armature voltage modulus output. 0 to +10 V for 0 to $+/-500 \mathrm{~V}$. 1 K series buffer resistor
T57 DO Demand output. 0 to $-/+10 \mathrm{~V}$ represents 0 to $+/-100 \%$ speed demand. This is the final summation of all the speed demand inputs. 1 K series buffer resistor.
$T 58$ COM Common. OV for drive electronics.
T59 REV Reverse relay driver. PNP open collector output. -40 V max. voltage when off, 100 mA max. current when on. A flyback diode is included. This driver is de-energised for speeds below 5\% OR reverse rotation.

T60 TIM TIMER relay driver. PNP open collector output. -40 V max. voltage when off, 100 mA max. current when on. A flyback diode is included internally. This driver is de-energised when the stall timer starts to integrate. (current demand exceeds 105\% of preset level)

T61 +12 regulated rail. 10 mA capability, short circuit protected. This rail provides power to the drive electronics, the drive will not function while this rail is shorted. If it is used for external circuitry please ensure that it is buffered from possible interference by inserting a series resistor as close as possible to T61. A value between 10 and 100 Ohms should be adequate.

76255 STOP/START this input can be used to latch or unlatch the stall circuit. It may be necessary to de-couple this with a 0.1 l . capacitor to $C O M$. To unlatch or reset the stall circuit, momentarily connect T 62 to $\mathrm{T} 61+12 \mathrm{~V}$. To latch the stall circuit, momentarily connect T62 to T63-12V.

T63-12 regulated rail. 10 mA capability, short circuit protected. This rail provides power to the drive electronics, The drive will not function while this rail is shorted. If it is used for external circuitry please ensure that it is buffered from possible interference by inserting a series resistor as close as possible to $T 63$. A value between 10 and 100 Ohms should be adequate.

T64 XIP alternate speed input via RL2 de-energised. Also on terminal 18.0 to $+/-10 \mathrm{~V}$ for 0 to $+/-100 \%$ speed demand summing input. The JOG SPEED preset (0 to $+/-1 V$) is connected to this terminal via a 470 K resistor.

T65 - $/ \mathrm{P}$ ramped aux inverting speed input $-/+10 \mathrm{~V}$ represents $+/-100 \%$. 100K input impedance summing input.
T66 IP ramped auxiliary speed input $+/-10 \mathrm{~V}$ represents $+/-100 \%$. 50K input impedance summing input.
T67 +24 volt rail. Unregulated, unprotected. may vary between 35 V and 18 V depending on loading and supply. Output capability 25 mA . Do not overload or short this rail.

T68 COM common. OV for drive electronics.
T69 IOM Modulus armature current output. 0 to +5 V for 0 to $+/-100 \%$ armature current. 1 K series buffer resistor.
770 IP Direct speed input. 0 to $+/-10 \mathrm{~V}$ for 0 to $+/-100 \%$ demand. This input by-passes the setpoint ramp circuit. It is connected to the speed jumper pin so that the direct speed input may be used when the drive is in torque mode. (470K Ohms input impedance)

WARNING. TAKE CARE NOT TO TOUCH ANY HIGH POTENTIAL PARTS OF THE UNIT ON THE LOWER POWER CARD WHILST PROBING THESE TERMINALS. THE FOLLOWING TERMINALS ARE ALSO CONNECTED TO OTHER TERMINALS AS FOLLOWS:T17-T57 DO, T18-T64 XIP, T19-T66 IP, T20-T65 -IP, T22-T55 RO.

TO ILLUSTRATE SPEED SCALING CONSIDERATIONS

MOTOR DETAILS

SYSTEM DETAILS

TACHOMETER

Max. armature volts 460 V . Field voltage 210 V
Max. armature current 20 amps. Field current 1 amp
Max. speed at full armature volts is 1800 RPM.
The motor is driving a roller via a 3 : 1 reduction gearbox. a tachometer is connected to the roller shaft.

90 V per 1000 RPM

step 1) Calculate inferred motor speed (maximum). Roller speed 450rpm therefore motor speed must be 450 times $3=1350 \mathrm{rpm}$.
step 2) Calculate tachometer output voltage and inferred armature voltage.
Tachometer output $=90 \mathrm{~V}$ times $450 / 1000=40.5 \mathrm{~V}$
Inferred arm. volts $=460$ times 1350/1800 $=345 \mathrm{~V}$
step 3) Calculate max. possible drive output voltages in order to find out if the supply is suitable for the application.

Armature. ac times 1.1 which is 415 times $1.1=460 \mathrm{~V}$
Field. ac times 0.9 which is 415 times $0.9=370 \mathrm{~V}$
Armature volts required 345 , maximum available 460 V hence OK
Field volts required 210, maximum available 370 hence OK
Note, in this case the maximum volts available exceed the required levels by a considerable margin, hence care must be taken to approach the limits from the right direction. Follow the set up procedure to ensure this.

Set up field regulator section to give correct output, refer to page 23.
step 4) Commissioning according to preferred set up procedure.
Initially in armature voltage feedback mode with tacho wire removed (T9).
Set up to 345 armature volts for +10 V speed demand. Measure tacho volts and confirm,
a) voltage is -40.5 V measured with respect to common (terminal 8).
b) polarity is negative for positive demand, and correct rotation sense. Independant speed verification using hand held tachometer or known speed monitor is advisable.

Rescale S3, S4 for correct range (30-60) both off . Re-connect tacho and set feedback source to tacho. S8 off. Set MAX SPEED preset ACW. initially, then recalibrate final max speed to give tacho volts of -40.5.

20 INPUT (Page 20)

THE COMMENT BOXES SURROUNDING THE BLOCK DIAGRAM ARE INTENDED
TO GIVE A BRIEF DESCRIPTION ONLY OF THE KEY FEATURES.
PLEASE REFER TO THE MANUAL FOR A MORE COMPLETE DESCRIPTION. THE CHECKLIST AT THE TOP OF THE
PAGE HIGHLIGHTS THE KEY AREAS OF CONCERN FOR COMMISSIONING

MODEL	$\begin{aligned} & \text { MAX } \\ & \text { It OF } \\ & \text { FUSE } \end{aligned}$	AC I/P AMPS	DC O/P AMPS	LITTLEFUSE				BUSS				IR American Style		IR BS88		FERRAZ	
				UP TO 250V UP TO 500 V AC SUPPLY AC SUPPLY				UP TO AC SUP	$\begin{aligned} & 250 \mathrm{~V} \\ & \hline \text { PPPLY } \end{aligned}$	$\begin{aligned} & \text { UP TO } \\ & \text { AC SU } \end{aligned}$	$0500 \mathrm{~V}$ UPPLY	UP TO 250 V AC SUPPLY	UP TO 500 V AC SUPPLY	UP TO 250 V AC SUPPLY	UP TO 500 V AC SUPPLY	UP TO 250V AC SUPPLY	UP TO 500V AC SUPPLY
SLX 5	600	10	12	L25S	12	L50S	12	FWX	12	FWH		XL25X15	XL50F015	L350-12	661RF0025	URE 12 P97487	$\begin{aligned} & \text { 6,600 CP URD } \\ & 22-58 / 25 \\ & 199956 \\ & \hline \end{aligned}$
SLX 10	600	20	24	L25S	25	L50S	25	FWX		FWH		XL25X25	XL50F025	L350-25	661RF0025	URE 25 X 97494	$\begin{aligned} & 6,600 \mathrm{CP} \text { UAD } \\ & 22-58 / 25 \\ & B 93956 \end{aligned}$
SLX 15	600	30	36	L25S	40	L50S	40	FWX	40	FWH	40	XL_25X40	XL50F040	L350-40	661RF0035	URGS 35 T 76653	$\begin{aligned} & 6,600 \mathrm{GP} \text { URD } \\ & 225 \mathrm{~F} / 40 \\ & \mathrm{~S} 94.822 \end{aligned}$
SLX20	5000	40	48	L25S	50	L50S	50	FWX	50	FWH	50	XL25X50	XL50F050	L350-50	661RF0050	URGS 50 V76654	$\begin{aligned} & 6,600 \text { CPURD } \\ & 22-58 / 50 \\ & \mathbf{W} 94779 \\ & \hline \end{aligned}$
SLX30	5000	60	72	L25S	80	L50S	80	FWX	80	FWH	80	XL25X80	XL50F080	L350-80	661RF0080	URGS 75 X 76656	$\begin{aligned} & \text { 6,660 CP URD } \\ & 22-58 / 80 \\ & \text { A } 94829 \end{aligned}$
SLX 40	5000	80	96	L25S	100	L50S	100	FWX	100	FWH		XL25X100	XL50F100	L350-100	661RF00100	$\begin{aligned} & \text { URZ } 100 \\ & \text { Y } 85558 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,600 \mathrm{GP} \text { URD } \\ & 22-58 / 100 \\ & \mathrm{Y} 948827 \\ & \hline \end{aligned}$
SLX50	11850	100	120	L25S	125	L50S	125	FWX	125	FWH		XL25X125	XL50F125	L350-125	661RF00125	URZ 125 G 97526	$\begin{aligned} & \text { 6,600 URGD } \\ & 27-60 / 125 \end{aligned}$
SLX65	108000	124	155	L25S	175	L50S	175	FWX	175	FWH		XL25X175	XL50F175	L350-180	661RF00160	$\text { URZ } 160$ $\text { H } 97527$	$\begin{aligned} & \text { 6,600 URGD } \\ & 27-60 / 160 \end{aligned}$
SLX85	108000	164	205	L25S	225	L50S	225	FWX	250	FWH	250	X125X250	XL50F250	T350-250	661RF00250	$\begin{aligned} & \text { URY } 260 \\ & \text { N } 97670 \end{aligned}$	$\begin{aligned} & \text { 6,600 URGD } \\ & 27-60 / 250 \end{aligned}$
SLX115	128000	216	270	L25S	275	L50S	275	FWX	300	FWH		XL25X300	XL50F300	T350-315	661RF00315	$\begin{aligned} & \hline \text { URY } 300 \\ & \text { P } 97625 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,600 \text { URGL } \\ & 36-55 / 280 \end{aligned}$

IN GENERAL THE AC SUPPLY CURRENT PER PHASE IS 0.8 TIMES THE DC OUTPUT CURRENT, AND THE FUSE RATING SHOULD BE APPROX. 1.25 TIMES THE INPUT CURRENT. THE FUSES SPECIFIED IN THIS TABLE HAVE BEEN RATED TO INCLUDE THE 150\% OVERLOAD CAPABILITY AND OPERATE UP TO 50C AMBIENT AT THE MAXIMUM DRIVE RATING. TO SELECT A FUSE AT OTHER RATINGS FOR EXAMPLE WHEN USING A MOTOR RATED AT A LOWER POWER THAN THE DRIVE UNIT OR OPERATING AT A REDUCED MAXIMUM CURRENT LIMIT SETTING. SELECT A FUSE WITH A CURRENT RATING CLOSEST TO THE ARMATURE CURRENT AND WITH AN I ${ }^{2} t$ RATING LESS THAN THE MAXIMUM SHOWN IN THE TABLE. IF A DC FUSE IS FITTED IN SERIES WITH THE ARMATURE IT MUST BE A DC RATED SEMICONDUCTOR TYPE WITH CURRENT RATING 1.2 TIMES THE MOTOR FULL LOAD CURRENT, DC VOLTAGE RATING SUITABLE FOR THE MAXIMUM ARMATURE VOLTAGE AND WITH AN I ${ }^{2} \mathrm{t}$ RATING LESS THAN THE MAXIMUM SHOWN IN THE TABLE.
RATING TABLE UP TO SLX50
(Rating depends on motor type) (35 cubic ft./min = 1 cubic $\mathrm{m} / \mathrm{min}$)

DRIVE MODEL NUMBER	$\begin{aligned} & \text { MOTOR O/P } \\ & \text { AT } 460 \mathrm{~V} \\ & \text { KW HP } \end{aligned}$		MAXIMUM CONTINUOUS AMPS Input Output		MAX FIELD AMPS 2.5		TYPICAL CABLE SIZE $4 \mathrm{~mm}^{2}$	LINE REACTOR TYPE LR48	COOLING $\mathrm{N}=$ natural F= forced cfm watts		
SLX5	5	6.6	10 AC	12 DC					17	N	45
SLX10	10	13.3	20 AC	24 DC	2.5	600	$4 \mathrm{~mm}^{2}$	LR48	17	N	80
SLX15	15	20	30 AC	36 DC	2.5	600	$6 \mathrm{~mm}^{2}$	LR48	17	N	120
SLX20	20	26.6	40 AC	48 DC	2.5	5000	$6 \mathrm{~mm}^{2}$	LR48	17	N	120
SLX30	30	40	60 AC	72 DC	5.0	5000	$16 \mathrm{~mm}^{2}$	LR120	35	F	200
SLX40	40	53.3	80 AC	96 DC	5.0	5000	$25 \mathrm{~mm}{ }^{2}$	LR120	35	F	300
SLX50	50	66.6	100 AC	120DC	5.0	11850	$35 \mathrm{~mm}{ }^{2}$	LR120	35	F	320

RATING TABLE SLX65/85/115
(Rating depends on motor type) (NOTE 60cfm $=2$ cubic $\mathrm{m} / \mathrm{min}$)

MODEL NUMBER	MOTOR O/P AT 460V		MAXIMUM CONT. AMPS I/P \qquad				MAX FIELD AMPS	MAIN FUSES It	AUXILIARY FUSE RATING AMPS 1^{2}		LINE REACTOR TYPE	COOL AIR FLOW	IING MAX WATTS
SLX65	65	90	124	AC	155	DC	10 A	108000	12A	140	LR270	60 cfm	350
SLX85	85	115	164	AC	205	DC	10 A	108000	12A	140	LR270	60 cfm	475
SLX115	115	155	216	AC	270	DC	10 A	128000	12A	140	LR270	60cfm	650

IMPORTANT WARNING. DO NOT ALLOW ARMATURE CURRENT LIMIT TO EXCEED MOTOR RATING. IF THE MOTOR CURRENT RATING IS LESS THAN THE DRIVE RATING, USE MAX CURRENT PRESET TO REDUCE THE CURRENT LIMIT. ALTERNATIVELY THE DRIVE MAY BE DE-RATED BY RE-BURDENING THE CURRENT TRANSFORMERS ACCORDING TO THE FORMULA. :- R (KOhms) = 2/IMAX. The burden resistors R100/R101/R102 are in parallel, and are found on the bottom edge of the lower power board.

These application notes are strictly for assistance in the general implementation of Sprint products, and are provided for general guidance in system applications. It is entirely the users responsibility to ensure that any system is suitable for the application in question and all due care is taken with regard to overall safety of the installation. Sprint Electric does not accept any liability in respect of the application.

Section 4

Application diagrams for model SLX

Page	Drg.	Application
1	1	Armature voltage feedback. Forward / Reverse on setpoint pot with centre zero
	2	Tacho feedback. Forward / Reverse by pushbutton. Direction memorised during stop
	3	Dynamic braking. Forward / Reverse controlled by switch or contact
	4	Torque control. Start initiated by Forward / Reverse pushbuttons

1) ARMATURE VOLTAGE FEEDBACK. FORWARD AND REVERSE ON SETPOINT POT, WITH CENTRE ZERO

FOR HIGH ACCURACY ARMATURE VOLTAGE FEEDBACK THE FIELD REGULATOR MUST BE PRESET IN LINEAR MODE
EXTERNALIA COMPENSATION MAY BE NECESSARY FOR IMPROVED LOAD REGULATION. INCREASE THEIR COMP TO

3) BASIC CONNECTION. DYNAMIC BRAKING

C1 normally open. C2 normally closed. The relays operate together. The peak braking current should not exceed 2 times the nominal armature current (refer to motor manufacturer). The resistor must be able to dissipate the waste heat.

2) TACHO FEEDBACK. FORWARD / REVERSI: BY PUSHBUTTON, DIRECTION MEMORISED DURING STOP MODDE. RAPID BRAKING WITH RUN CONTACT. RAMPED BRAKING WITH STIOP PUSHBUTTON.
(tacho polarity on terminal 9 must be negative for positive demand)

4) TORQUE CONTROL, OVERSPEED LIMITING BY SEPERATE SPEED SETPOINT

If the speed exceeds the level programmed by the speed setpo int, the current demand comes out of limit and the speed loop takes control. The start function is ini iated by the direction pushbuttons.

UG101877 ISS10

SLX 1) ARMATURE VOLTAGE FEEDBACK. FORWARD / REVERSE ON SETPOINT POT WITH CENTRE ZERO. 2) TACHO FEEDBACK. FORWARD / REVERSE BY PUSHBUTTON. DIRECTION MEMORISED DURING STOP. 3) DYNAMIC BRAKING. FORWARD / REVERSE CONTROLLED BY SWITCH OR CONTACT. 4) TORQUE CONTROL. START INITIATED BY FORWARD/REVERSE PUSHBUTTONS.

 HEALTH AND SAFETY AT WORK. ELECTRICA
DEVICES CONSHTUTE A SAFETY HAZARD. IT
 ENSURE COMPLANCE WITH ANY ACTS OR
QYLAWS IN FORCE. ONLY SKLLED PERSON SHOULD INSTALL THIS EQUPMENT.

3) THE DRIVE SPEED IS SET BY A REMOTE OTO +10 VOLT SIGNAL. THE LOCAL MIN SPEED IS SET BY THE JOG SPEED PRESET.

4) LOCAL OR REMOTE SPEED DEMAND SELECTED BY PUSHBUTTON, THE DRIVE WI L RAMP aETNEEN THE SETPOINTS

1 METHOD FOR ENABLING POWER ON FOR MULTIPLE DRIVES WITH ONE SET OF POWER ON, POWER OFF PUSHBUTTONS. NOTE. THE PROPOGATION DE LAY FOR TRIPPING IS APPROX. 100 millisecs. PER DRIVE. (note, the main contactor can be rated AC1, thermal)

C1A
${ }^{\text {off }} \mathbf{C 1 D}{ }^{\text {on }}$

OFF ON HEERTED IN THE ARMATURE INSERTED IN THE ARMATURE CIRCUIT INSTEAD OF OR ASWELL AS THE SUPPLY

sLX

ZERO or REVERSE REFERENCE INTERLOCK

A common requirement to prevent drive enable on turn on if the setpoint reference is POSITIVE and greater than 5%
Provision has been made on the MICRO ANALOG PROCESSOR to have this feature selectable.

The SLX is provided with a REVERSE or ZERO speed function. A link on the PROCESSOR is remade and the REVERSE speed detector becomes a REVERSE or ZERO reference detector

A layout of the MICRO ANALOG PROCESSOR is shown below. (Located on the top edge of the control card).
To mimiemen the zero or leverse eference function the S mink nus be apened and the A ink made the inks are made by solder bridges. Take oreat are not to damage the tracks when emoving the solder

Once the link has beet altered ic can be tested

 by selecting the REVERSE speed relay funcion (S7) and then applying a setpoint to terminal s The elay output should charge state at 0.5 V the elay will be ene gised for valtages: than 0.5 V the POWER ON pushbutton as shown.

If this function is implemented by the user, please add a label to indicate the change.

HEALTH AND SAFET AT WOAFK. EEECTRICAL OEVICES CONSTMEA SAFETH HZZARD. IT ONELRECOMPLIANCE WITH ANY AGTB OR JYLWS IN FOFCE ONLV SKUIED PERSO HOUID INGTAII THIS EQUPMEN

THE NIP ROLLS ARE DRIVEN BY DRIVE 2 IN STANDA.RD SPEED MODE. THE SEIPOINT RAMP OUTPUT IS TAKEN TO DRIVE 1.
DRIVE 1 IS USED TO CONTROL THE OVERHAULED IIIP ROLLS. IN ONE OF 2 MODES. IT IS ARRANGED TO GIVE FORWARD ROTATION FO 7 A NEGATIVE ARMATURE VOLTAGE 1) AS A SPEED FOLLOWER
2) APPLYING REVERSE FORCE TO THE WEB. A REDIJCED SPEED DEMAND CAUSES THE DRIVE TO TRY AND SLOW DOWN. TO DO THIS IT ASKS FOR POSITIVE CURRENT, WHICH IS LIMITED BY THE EXTERNAL TORQUE POT, NOTE, THE STALL TIMER IS AUTOMATICALLY INHIBITED IN THIS MODE.

1) THE JOG BUTTON WILL RAMP THE DRIVE DOWN TO STANDSTLLL IF MOMENTARILY PRESSED, AND
THEN CONTNUE TO JOG AT THE XIP SPEED.

2) Contactor remains energised during jog. The power on and :tart functions are combined.

3) JOGGING ON MAIN CONTACTOR. Reduce speed to minimum before selecting jog

 4) JOGGING ON MAIN CONTACTOR 288x40 ${ }^{199}$

MODEL SLX
 SIGNAL PADS

Provision has been made on the MICRO ANALOG PROCESSOR to enable monitoring of some useful signals.

A layout of the MICRO ANALOG PROCESSOR is shown below. (Located on the top edge of the cor itrol card).

Ramp Control Output. This signal indicates the setpoint ramp status and is -11 V when ramping up and OV when the ramp has finished Torque Command Input. This signal pad is connected to terminal 6 and shows the level of the auxiliary reference 0 to $+/-10 \mathrm{~V}$

Field Output. This signal is connected to terminal 24 and shows the magnitude of the Field current. 0 to +5 V for $0-100 \%$ current.

Run. Shows the status of the RUN signal within the drive. 0 to +11.5 V when the RUN terminal 7 is open or main contactor disabled, OV to run

Torque Demand Output. 0 to +7.5 V represents 0 to 150% torque demand (armature current). +5 V represents 100%.

Demand Output. 0 to -10 V represents 0 to $+100 \%$ speed demand. This signal is also on terminal 57 and terminal 17.
Direct speed Input. This signal is also on terminal 70, and terminal 6 if the drive is in speed mode. 0 to +10 V represents 0 to 100% speed.
+10 V . ultra stable speed reference voltage. Also on terminal 1. Absolute value $10 \mathrm{~V}+/-5 \%$. Output capability 10 mA maximum
-24 V . Unregulated -24 V power supply. May vary between -18 V and -35 V depending on unit supply voltage and loading. 25mA max, T51 +24 V . Unregulated +24 V power supply. May vary between +18 V and +35 V depending on unit supply voltage and loading. 25 mA max. T 67

Inverting ramped speed input. Also 0 II 165 and T20. 0 to -10 V represents 0 to $+100 \%$ ramped speed demand. True bi-polar arithmetic summing.

Offset speed input. 0 to +10 V represer ts 0 to -25% speed demand. This input is used for the $4-20 \mathrm{~mA}$ signal loc p offset function.
Input terminal 3 . This signal is the mair speed demand signal normally input via terminal 3.0 to +10 V for 0 to $-.100 \%$ speed demand.
Ramp input Auxiliary. Non-inverting sp sed input also on T66 and T19. 0 to +10 V for 0 to $+100 \%$ speed demand. 7rue bi-polar arithmetic summing.
Ramp sum total. This signal is the sum nation of all the speed ramp inputs. 0 to $-/+5 \mathrm{~V}$ represents 0 to $+/-100 \% \mathrm{spfed}$ demand prior to ramping.
Ramp Output. This signal is the rampe x version of the signal on 85.0 to +10 V represents 0 to 100% speed deniand. It is also on T55 and T22.
$A V$ output. This signal represents the a mature voltage signal. Also on terminal 56.0 to +10 V represents 0 to $+/-500 \mathrm{~V}$ at the armature terminals.

Common. Electronic OV
+12 V regulated rail. 10 mA maximum a'ailable. Tolerance 5%.
+12 V regulated rail. 10 mA maximum available. Tolerance 5%.

1) THE JOG BUTTON WLLL RAMP THE DRIVE DOWN TO STANOSTILL IF MOMENTARILY PRESSED, AND THEN CONTINUE TO JOG AT THE XIP SPEED VIA THE DIRECT SPEED INPUT ON 770.

2) STOP OR RUN SELECT. REGEN DOWN USING 1 IS AND/ORZS JUMPER

3) CONTACTOR REMAINS ENERGISED DURING JOG. THE POWER ON AND START FUNCTIONS ARE COMBINED. JOG SPEED IS SET BY EXTERNAL POT

4) Jogging on main contactor with automatic zero sped jog interlock. (S6 on and S2/5/7 off)

SPRINT/EAMtie
UG101894 ISS10

SLX 1) JOGGING WITH MAIN CONTACTOR PERMANENTLY ENERGISED VA DIRECT SPEED INPUT 2) JOGGING WITH START AND POWER ON FUNCTIONS COMBINED AND EXTERNAL JOG SPEED REFERENCE 3) JOGGING WITH START AND POWER ON RUN SELECT. REGEN DOWN. 4) JOGGING ON MAIN CONTAGTOR WITH ZERO SPEED INTERLOCK

Section 4 page 14

The high ener jy spikes may cause damage to other equipment, the drive auxiliary inputs, the blower motor or
stalled motor voltage
load voltage is zero for
duration of commutation
because E1-E3 are at
zero duration of commutation
because E1-E3 are at zero
 the commutation process in the armature thyristor bridge. notch (a) in E3-E1 is caused by E3 being shorted to E2 notch (b) in E3-E1 is caused by E3 being shorted to E1 notch (c) in E3-E1 is caused by E1 being shorted to E2
unwanted thyristor triggering. To prevent this it is necessary to fit a supply conditioning BUCKET circuit to the drive supply.

The BUCKET circuit will soak up the spikes and prevent damage.

As a general rule a BUCKET circuit will be required with local transformer supplies unless the consumption of current by other non-inductive loads connected to the same transformer exceeds the drive current at any time.

17	TOTAL SETPOINT OUTPUT
18	XIP speed demand input. se
19	AUXILIARY SPEED INPUT +
20	AUXILIARY INVERTING SPE
21	CURRENT OUTPUT. 0 to +/
22	RAMPED SETPOINT OUTPU
23	SPEED OUTPUT. +/-10V full
24	FIELD CURRENT OUTPUT.

 of dn ןnd ןeuגəŋul und of $\wedge 0$
 pıeэ uo 」ədun! of бu!pıoэงe
 O
O
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots $+/-10$ volts output. 10 mA .

 uOL ' n dino \% $\%$-/+ Słon OL+

A

Alarm defeat 159
Alarm reset 15
Alarms 15
Alternate supply volts 10
Altitude 2
Analogue processing 11
Applying power 10
Arm volts/tach 8
Armature voltage 2
Armature voltage limit 227
Assembly 25
Automatic field weakening 23
Auxiliary supply phasing 6
Auxiliary trip 1015

B

Block diagram 28
Block diagram of inhibit 17

C

Contact ratings 2
Cooling air 429
Current loop signal 4-20mA 9
Current response 14
Current stability 14
Customer presets 2223

D

Derivative term 142328
Disable contactor 10
Dynamic indicators 2
E
Extemal alarm lamps 23

F

Fan 429
Fault finding chart 24
Feedback volts 827
Field adjustment 1123
Field control 823
Field loss 15
Field output volts 2
Field regulating region 16
Field regulation 123
Field set up 23
Field voltage display 1623
Fixing slots 4
Function switches 6822
Fuses 2529
Fusing and earthing 3

G

General description 1

I

Increased overload facility 21
Initial presets 7
Input fuse rating 29
Installation checking 7
Interface connector 23
Inverted total setpoint 11

J

Jumper functions 221715
Jumpers 69

L

Lamps +/- 16
Latched indicators 215
Line reactor $25 \quad 2930$
Links 9
List of contents 1
Log of presets 22
Low speed check 13

M

Main contactor 123
Main contactor disable 7
Main contactor slave 11
Maintenance 25
Max current graphs 19
Max current preset/mode 20
Max field lamp 16
Max speed 13
Maximium field amps 29
Maximum amps 29
Mechanical outline 4
Min field lamp 16
Min speed 13
Motor direction 13
Motor inspection 7
Motor power 229

0

Option links 622
Overload capacity 221
Overshoot 14

P

Peak amps 15
Phase rotation 67
Power board assembly 25
Power on/off 133111412
Power on inhibit 1117
Preset controls 22223
Preset pots 62223
Preset switches 262223
Pushbutton inputs 2531

a

Quadrant diagram 20
Quench condition 1718

R

Rails and drivers 226
Ramps 1118
Rating table 29
Ratings 229
Reference 115
Relative humidity 2
Relay 1 function 8
Relay 217
Run line 111817

5
S ramp 9
Safety 1113 (inside front cover)
Set up procedure 7-14
Setpoint checking 11
Setpoint ramp graphs 18
Signal outputs 252628
Slave contact 12
Small perturbation 14
Spares 25
Speed demand 11
Speed error loop 12
Speed jumper 9
Speed range 28
Speed response 14
Speed stability 14
Stability 14
Stall 1621
Stall detector 21
Stall integrator 21
Stall lamp 111222
Stall threshold 50\% 219
Stall timer description 21
Start $\quad 11 \quad 1317$
Steady state accuracy 2
Stopping mode graphs 1817
Supply voltage 211
Suppressor 12
Switch functions 22
T
Tach/arm volts 82223
Tacho feedback 1327
Tacho loss 15
Temperature 2
Terminal 6, 1920
Terminal description 51-70, 26
Terminal listing 526
Terminal specification $5 \quad 26$
Thermistor 1015
Timer 1621
Timer lamp 1221
Torque/speed jumper 20
Torque control 122019
Torque demand 1219
Torque function graphs 19
Torque jumper 9
Torque limit 219
Typical cable size 29
Typical wiring $3 \quad 31$

U

Up/down ramps $13 \quad 18 \quad 22$

W

Warning 1113 (inside front cover)
Worked example speed scaling 27

Z

Zero detector 17
Zero speed 13
Zero speed jumper 9
ZS quench 18

SPRIWHElectric

HEAD OFFICERudford Industrial EstateFordArundelWest SussexGreat Britain BN18 OBE

$$
\text { TEL (0903) } 730000
$$

$$
\text { FAX (0903) } 730893
$$

NORTH AMERICA
1928 Isaac Newton Square Ban
Reston
VA 22090
USA

